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! workshops and reports, along with successful operation of new sources
at APS, ALS, BESSY, SLS, SPPS, FLASH, etc., indicate that compelling
ultrafast x-ray science will be enabled by accelerator-based sources

! several new x-ray FELS will soon become available

! optical lasers with high-harmonic-generation and phase-stabilization
have indicated the potential of ultrafast, short-wavelength science

! various proposals exist for R&D and construction of new ultrafast
x-ray sources, using crabing, slicing, seeded-FELs, ERLs, lasers, etc.

! high peak and average power lasers will be available for manipulating
electron beams and seeding FELs, but accelerator-based x-ray sources
have unique capabilities beyond x-ray harmonics of lasers

Observations on ultrafast x-ray science
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science beginning 2009-10



Near and Far Experimental Hall Hutches for LCLSNear and Far Experimental Hall Hutches for LCLS
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" ~ 109 W @ 30 fs @ 600 eV =  3 x 1011 photons

A ~ (1 - 100 µm)2

# ~ 10-18 cm2

N* / N = 0.1 - 100%

Potential issue: excitation or damage of sample during
probing of condensed matter by soft x-ray FELs

… concerns from Jo Stohr, others



…so how many x-rays are too much or too little ?

• Spontaneous sources
Synchrotron slicing = 102 - 104 photons/pulse at 1-10 kHz
Synchrotron crabing = 104 - 106 photons/pulse at 6 MHz
SPPS = 108 photons/pulse at 10 - 100 Hz

• FELs
LCLS = 1012 photons at 120 Hz
GW peak power

• Laser harmonics
10-6 conversion in peak and average power (MW peak / µW average)

A range of new sources and clever techniques are needed

- amplification of scattering by use of crystals
- dispersive spectroscopy for parallel measurements
- zone plate optics, better detectors, PEEM, diffractive imaging



Focused on 5 areas:

1.   Atomic, Molecular and Optical Physics
2.   Chemical Physics
3.   Correlated Materials
4.   Magnetization and Spin Dynamics
5.   Nanoscience and Coherence

Recent Berkeley Workshop 
“Science for a New Class of Soft X-ray Light Sources”
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Example of dynamic SXR spectroscopy:
K-edge absorption of high-T liquid carbon

Heimann, et al Correa, et al
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Inelastic hard x-ray scattering measures dynamic density and temperature

From scattering intensities, we determine:

• electron motion
• collective motion (plasmons, ion acoustic wave)
• free and bound electrons
• screening and collisions

By varying the scattering angle, we determine:

• collective modes and non-collective behavior

Rayleigh
Coherent
Scattering
~ f(Z2

tightly-bound)
Compton
Scattering
~ f(Zfree,ne,Te)

Compton
Scattering
~ f(Zweakly-bound)

~(2kbTe/mc2)1/2!  #/#

-h#/mc2

0

Schematic of X-ray scattering signal



Laser plasma x-ray source
used to measure x-ray scattering on compressed Be

Mn Calibration

Scatter

Mn He-$Inter-combinations

6100 6150 6200
0

1

2

3

 

 

In
te

ns
ity

Energy [eV]

 data
 fitting

Ion feature

Ion feature+Plasmon

Plasmon sc
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- measured plasmon scattering from shock compressed Be
- position of the plasmon resonance yields density

ne=1%1023 cm-3, Te=10 eV at 3 ns

t=0 ns
t=1 ns

t=1 ns

11 heater
beams

t=2.5 ns

17 backlighter
beams

Haeja Lee, et al

X-ray Thomson scattering 
uses x-ray backlighters to study compressed Be

Glenzer, Lee, Falcone, et al



Disordering of a lattice through bond-breaking
observed at short times through 8 keV diffraction

changes at the SPPS

• (111) and (220) reflections measured

• non-thermal melting observed

• more complex system will require more photons

SPPS Collaboration



What is the timescale of the bcc-hcp phase transformation in Fe?

Intense x-ray fluxes from LCLS will enable real-time in situ
measurements of microstructure evolution at high pressure

bcc static
bcc compressed
hcp phase

[Kalantar et al., Phys. Rev. Lett. (2005)]

CuCurrent measurement
limited to timescales >> psec

Simulations predict subpicosecond
phenomena observable using LCLS

Kadau et al., Science (2002).
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• attosecond electron dynamics
• probe and control of electron correlation
• evolution of excited state dynamics in the gas phase
• extreme non-Born-Oppenheimer chemistry
• non-adiabatic control schemes
• 2-d x-ray correlation spectroscopy 

Atomic, Molecular and Optical Physics 
and 

Chemical Physics Breakouts

Recent Berkeley Workshop 
“Science for a New Class of Soft X-ray Light Sources”







Workshop Conclusions Workshop Conclusions ““Science for a New ClassScience for a New Class
of Soft X-ray Light Sourcesof Soft X-ray Light Sources””

• Function relies on structure, bonding, and dynamics
– soft x-rays reveal bonding and structure
– hard x-rays reveal atomic positions

• Energy and information flow utilize ultrafast timescales
– beat timescales for dissipation

e.g., vision, photosynthesis
– allow multimode excitation to dissipate energy

e.g., DNA, damage
- speed, competing rates, and quantum pathways

critical to functional optimization

• Coherent radiation implies longitudinal and transverse coherence for 
– high resolution spatial imaging and spectroscopy
– high peak and high average power for non-linear measurements

• Imaging matter and energy flow will utilize additional IR to x-ray radiation



Requirements for new light sources are challenging

• Tunable 
• Spectroscopy, imaging, and near resonance scattering

• Selectable pulse length

• Attosecond science for timescales of electron-electron correlation
• Longer (time-BW-limited) pulses required for high resolution

• Selectable pulse energy and repetition rate

• Maximize data and S/N, and minimize damage 
• Multiple wavelengths and precision delays

• Beam quality

• Coherence and stability
• Amplitude and phase controlled pulses

• Synchronized pumps 
• THz, IR, optical, magnetic - to drive non-equilibrium structures 
• Pressure, temperature, electronic, and phonon excitation beyond ambient

• Induce nanoscale structure with transient gratings



A vision for a future light source facility
HIGH REP-RATE, SEEDED, VUV — SOFT X-RAY FEL ARRAY

• Independent array of configurable FELs
• Control of electrons: seeded, attosecond, ESASE
• Control of x-rays: wavelength, pulse duration, polarization

Laser systems,
timing &

synchronization

Beam distribution and
individual beamline tuning

CW superconducting linac

Beam
Phase-space
manipulation

Low-emittance,
high rep-rate
electron gun



Performance goals of a SXR FEL

Short-pulse 
beamlines

High-resolution 
beamlines

Sub-femtosecond 
beamlines

Wavelength range (nm) ~200 – 1 ~200 – 1 ~40 – 1
Photon energy (eV) 6 – 1240 6 – 1240 30 – 1240
Repetition rate (kHz) 100 100 1-100
Peak power (GW) 1 1 0.1 – 0.3

Photons/pulse (@1 nm) 5x1011 (in 100 fs) 2.5x1012 (in 500 fs) 1.5x108 (in 100 as)
Timing stability (fs) 10 10 TBD

Pulse length (fs) 1 – 100 100 – 1000 0.1 - 1
Harmonics !  few% !  few% !  few%
Polarization Variable, linear/circular Variable, linear/circular Variable, linear/circular

FELs WITH THREE MODES OF OPERATION



Seeded FEL
 ENHANCED CAPABILITIES FOR CONTROL OF X-RAY PULSE

Electron beam is 1.5 GeV, energy spread 100 keV, 250 A current, 0.25 micron emittance; laser seed is 100 kW at 32 nm; undulator period 1 cm

SASE

25 fs seed

500 fs seed
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Bunching of the electron beamBunching of the electron beam

Energy-dependent
path length

!Ebeam

Time

!Ebeam

Time

Ibeam

Time

Induced current
modulation in
the electron
beam

ENERGY MODULATION FOLLOWED BY DISPERSIVE SECTION 
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Harmonic cascadeHarmonic cascade

MULTIPLE STAGES TO REACH SHORTER WAVELENGTHS



laser wiggler

bend

magnets

mirror

beamline x-rays

wiggler

femtosecond

electron bunch

bend magnet

beamline

30 ps electron

bunch

femtosecond

laser pulse

spatial separation

dispersive bend

&W

electron-photon

interaction in wiggler

femtosecond x-rays

e-beam 

Laser-sliced x-ray pulses from synchrotrons
are used as tunable soft and hard x-ray probes

Zholents and Zolotorev, Phys. Rev. Lett., 76, 916,1996

undulator
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3rd Generation Storage Rings

Cornell ERL (6 keV)

European XFEL (12 keV)

LCLS (8 keV)

BESSY FEL (1 keV)

FLASH (200 eV)

APS ERL (25 keV)

NSLS-II (10 keV)

New source performance comparison
TIME-DOMAIN RANGING FROM PICOSEC TO SUB-FEMTOSEC
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Summary of integrated photon flux needed 
in condensed matter physics experiments

• angle resolved photoemission: volume datasets

- 1e17 ph (20 – 100 eV) 

• microscopy

- 1e13 (280 – 1200 eV)

• spectro microscopy

- 1e15 (280 – 1200 eV)

• time resolved microscopy

- 1e16 ph (280 – 1200 eV)

• time resolved spectroscopy

- 1e10 ph (280 – 1200 eV) From H. Padmore



December 12, 2007

Workshop “High Average Power Lasers
and High Harmonics”

Discuss future possibilities for high average power lasers that could:

- drive high-peak and high-average power high-order harmonic sources
- be utilized for coherent soft x-ray science
- manipulate electron beams and seed FELs
- enable laser-based accelerators for applications including light sources



- 5 mJ / pulse, 800 nm, 40 fsec
- focused to ~ 1e15W/cm^2 into 1 cm length Ar filled capillary

~ E9 photons/pulse/harmonic 

@ 300 eV

~ E12 photons/sec

Quasi-phase matching at 300 eV in Ar



Optimized HHG at longer drive wavelengths





Better Ultrafast, Everyday

Largest Selection of Ultrafast Lasers

10 W

1 kW



LWFA-driven coherent VUV source

LWFA Electron Beam:

Beam Energy                         0.5 GeV
Peak current                         10 kA
Charge   0.2 nC
Bunch duration, FWHM         20 fs
Energy spread (slice)               0.25 %
Norm. Emittance               1 mm-mrad

Undulator  Parameters:

Undulator type                          planar
Undulator period                       2.18 cm
Number of periods                    220
Peak Field                           1.02 T
Undulator parameter, K            1.85
Beta function (0.5 GeV)           3.6 m

 Undulator

VUV radiation
Laser beam 0.5 GeV,

10 kA, 20 fs
electron beam

&=31 nm

1013 photons/pulse, 0.2 mJ/pulse

 5 m

~3 cm

LBNL LWFA

plasma

channel

1018 cm-3

40TW,

40fs,

1018W/cm2

10 Hz 2.18 cm period,

220 periods, K=1.85

5 m

focusing
optics

Leemans, et al (LBNL) Collaboration
with MPQ, Germany



! Grand Challenge science requires a range of new x-ray sources

! FLASH, LCLS, the ALS-slicing beamline, APS time-resolved beamlines, etc.
are growing new communities of scientists interested in the time domain

! designs exist for high-power x-ray FELs, with flexible parameters and
multiple beamlines; R&D is needed

! lasers and high harmonics will have sufficient power for compelling
experiments and for seeding coherent, x-ray FELs; R&D is needed

! … but lasers (even at kW average powers and mW high-harmonics)
and crab/slicing sources will not rival average soft and hard x-ray power
from FELs, which have mA currents, GeV energies, and watts of coherent
x-rays for Grand Challenge experiments

! Crabing and slicing sources have comparable flux to laser harmonics in
the soft x-ray, and greater flux in the hard x-ray

! novel accelerator schemes may eventually become available to drive
electron accelerators for light source applications

Conclusions


